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Phosphoroselenoyl chloride bearing a 1,1¤-bi-2-naphthyl
group was reacted with racemic 2-alkanols to give the
corresponding esters. Based on the multiple combination of
their NMR spectra, a method for the assignment of the absolute
configuration of 1-aryl-2-propanols was established. The solid-
state conformations of the esters were confirmed by X-ray
structure analyses.

Determination of the absolute configurations of chiral
secondary alcohols by NMR spectroscopy is one of the most
important issues in chemistry.1 This method stems from Mosher
and co-workers’ development ofMTPA (¡-methoxy-¡-trifluoro-
methylphenylacetic acid) as a chiral derivatizing agent (CDA).2

Chiral alcohols are converted to acid esters by reacting with
CDA. The original Mosher’s method used 1H and 19FNMR
spectra of these esters. Later, Kusumi and co-workers developed
the modified Mosher’s method, in which the general trends of
the chemical shifts in the 1HNMR spectra are analyzed as much
as possible, and the absolute configurations of chiral alcohols
are then estimated.3 Several applications of MTPA esters for
assigning absolute configurations have been reported.4 Addi-
tionally, as CDA, other carboxylic acids with a chiral center
at the position ¡ to the carboxyl groups have also been
developed.5­9 31P and 77SeNMR spectra are also available as
probes to determine the absolute configuration, but they have
been used only for chiral discrimination.1c To enhance the
reliability of the determination of absolute configurations, the
development of CDA other than those with carboxylic acid
structures is also desirable.

Very recently, we found that phosphoroselenoyl chlorides
(BISEPCl) 1 can be readily prepared from PCl3, optically active
1,1¤-bi-2-naphthol, and elemental selenium, and 1 react with
secondary alcohols to give phosphoric acid esters as a diaster-
eomeric mixture in a nearly equal ratio.10 Therefore, these esters
can be used as a tool to determine the enantiomeric purity of
chiral secondary alcohols with 31P and 77SeNMR spectra. The
NMR data of the esters have been evaluated further. We report
here the use of 1 as a CDA and its application to the determination
of the absolute configurations of 1-aryl-2-propanols.

Initially, a variety of 2-alkanols 2 were derivatized with
(Rax)-phosphoroselenoyl chloride 1 in the presence of Et3N in
THF (eq 1).
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The reaction went to completion within 3 h, and the correspond-
ing esters 3 were obtained as diastereomeric mixtures. The

yields of the esters 3 are shown in Table 1 along with their 1H,
13C, 31P, and 77SeNMR spectra.

The absolute configurations of esters 3a­3e and 3h were
determined by comparing the NMR data of the corresponding
esters prepared from optically active alcohols 2. Diastereomeric
mixtures of 3f, 3g, and 3i­3l were separated by recrystallization
and/or recycle high-performance liquid chromatography to give
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aThe chloride 1 was reacted with 2 in the presence of Et3N in THF
for 3 h. bMeasured by using CDCl3 as a solvent. cThe ratio of
diastereomers (Rax,S:Rax,R) is shown in parentheses. dThe signals
due to methyl protons are shown. eThe signals due to chiral carbon
atoms are shown.
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the esters 3 in a different diastereomeric ratio. Esters 3 separated
were then cleaved with excess BuLi to give optically active 2-
alkanols 2f, 2g, and 2i­2l along with Bu3P, Bu3PSe, and 1,1¤-bi-
2-naphthol (Table 2).

These mixtures were initially purified by column chroma-
tography on silica gel to give the desired alcohols contaminated
with a small amount of 1,1¤-bi-2-naphthol. They were further
purified by bulb-to-bulb distillation. Based on a comparison of
the specific optical rotations of these alcohols with those in the
literature, the absolute configurations of the alcohols, and
eventually those of esters 3, were determined. For the 1HNMR
spectra in Table 1, the signals due to methyl protons adjacent
to the carbon atom bearing an oxygen atom are listed. For
13CNMR spectra, the signals due to the carbon atom bearing an
oxygen atom are listed. In all cases, the signals observed in
relatively higher fields are shown in blue. In 1HNMR spectra,
the signals of Rax,S-isomers are at higher fields, whereas those in
13CNMR spectra are at lower fields. Differences in the chemical
shifts were also observed in 31P and 77SeNMR spectra. In the
former spectra, the signals of Rax,R-isomers were at higher fields,
whereas those were at lower fields in the latter spectra. All of the
spectra in Table 1 showed exactly the same patterns. Therefore,
multiple combinations of NMR spectra can be reliably used to
determine the absolute configurations of 2-alkanols bearing
similar carbon skeletons. To further ensure the identical trend in
the 1HNMR spectra of the esters 3, values of ¦¤SR (ppm) and
the sign distribution for 3 are shown in Figure 1. The difference
in the chemical shifts of the methyl groups of 3 is negative,
whereas that of the alkyl groups of 3 is positive.16 This implies

that all the esters adopt similar conformations and that the
methyl groups of R-isomers are deshielded rather that those of
S-isomers.

The conformation of esters 3 was unequivocally determined
by X-ray molecular structure analyses of the esters (Rax,S)-3f17

and (Rax,S)-3h,17 whose ORTEP drawings are shown in
Figures 2 and 3, respectively. Although the shielding effect of
binaphthyl groups cannot be predicted based on the data at the
present stage, these proved that esters 3 have a similar
conformation in a solid state. The phosphorus atoms adopt a
tetrahedral structure with a slight deviation. They adopt an anti-
periplanar conformation with a chiral carbon atom­cyclohexyl
or ­phenylmethyl group and P=Se groups close to anti-
periplanar. Methyl groups are oriented at the synclinal position
of the selenium atom.

Table 2. Cleavage of phosphoroselenoic acid esters 3a
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Figure 1. ¦¤ values for esters 3 in 1HNMR spectra. ¦¤ values =
¤(Rax,S) ¹ (Rax,R).
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Figure 2. ORTEP drawing of phosphoroselenoic acid ester 3f.
Selected bond lengths (¡): P1­O1, 1.599(6); P1­O2, 1.606(6); P1­O3,
1.510(6). Selected bond angles (°): Se­P­O1, 112.1(2); Se­P­O2,
116.5(2), Se­P­O3, 118.3(2).
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Finally, multiple combinations of NMR spectra were used
to determine the absolute configuration of the alcohol 2m.
Initially, the alcohol 2m was derivatized with (Rax)-1 to give a
diastereomeric mixture of 3m (Scheme 1). Diastereomers of the
ester 3m were then separated by recrystallization to obtain 3m¤¤
with 83%de. The 1H, 13C, 31P, and 77SeNMR spectra of 3m
are also listed in Scheme 1. Based on these data in comparison
to those in Table 1, the absolute configuration of 3m¤¤ was
determined to be Rax,R. Finally, the ester 3m¤¤ was cleaved with
BuLi to give optically active alcohol (R)-2m with 79%ee in 58%
yield. The alcohol (R)-2m showed a specific optical rotation
with a negative sign, as did those of the R isomers in Table 2.

In summary, we have demonstrated a multiple-NMR
combination method for determining the absolute configurations
of 1-aryl-2-propanols. In the application of this method to 2-
alkanols with unknown absolute configurations, the tendencies
of all the spectra should match those of 2-alkanols with known
absolute configurations. In contrast, this system should not be
applied if even one of them is not consistent. Additionally, the
sequential manipulation from racemic 1-aryl-2-alkanols, i.e.,
synthesis, separation, and cleavage of esters 3, provides the
method for the preparation of optically active 1-aryl-2-prop-
anols. Further application of the present method to chiral
compounds is in progress.18,19
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Figure 3. ORTEP drawing of phosphoroselenoic acid ester 3h.
Selected bond lengths (¡): P1­O1, 1.600(3); P1­O2, 1.595(3); P1­O3,
1.558(3). Selected bond angles (°): Se­P­O1, 117.92(11); Se­P­O2,
103.23(14), Se­P­O3, 119.23(12).
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